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ABSTRACT

We investigate the use of the A* algorithm for joint segmen-
tation and classification of dialog acts (DAs) of the ICSI
Meeting Corpus. For the heuristic search a probabilistic
framework is used that is based on DA-specific N-gram lan-
guage models. Furthermore, two new metrics for perfor-
mance evaluation are motivated and described and the in-
fluence of different metrics for performance evaluation is
demonstrated. The proposed method is evaluated on both
traditional and new metrics, and compared with our previ-
ous work on the same task.

1. INTRODUCTION

To support higher-level tasks such as information retrieval
and summarization [1, 2], an input speech signal must be
segmented into meaningful units, such as dialog acts (DAs).
Typical DA types are statements, questions, and backchan-
nels. The task we investigate in this paper is how to split a
stream of words into nonoverlapping segments of text and
assign mutually exclusive DA types to these segments. While
this task description suggests a sequential solution, an ap-
proach based on joint segmentation and classification most
likely performs best. We use the termjoint segmentation
and classificationfor systems that do not implement this
task in the form of two independent modules running in se-
quence but produce their final result by taking into account
information from both the segmentation and the classifica-
tion. This is in contrast to sequential approaches that do not
take advantage of information produced by the classification
of DAs for the segmentation step.

Previous work mainly concentrated on either the seg-
mentation of speech into sentences [3, 4] or the classifi-
cation of already segmented text into various sets of DA
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types [5, 6, 7]. For automatic segmentation of speech, it
remains unclear how well a subsequent component handles
segmentation errors. For the latter case, the classification
of DAs, it is typically assumed that the true segmentation
boundaries are provided. As a consequence, a degradation
of the performance due to imperfect segmentation bound-
aries is to be expected. Of course, for fully automatic pro-
cessing of the speech stream both tasks need to be addressed.
An integrated approach to segmentation and the classifica-
tion of DAs based on the A* algorithm was used in the con-
text of the Verbmobil project [8]. On the ICSI (MRDA)
Corpus [9] a sequential approach is described in [10], while
a simple extension of the segmentation scheme performing
joint segmentation and classification of DAs is considered
in [11]. In the text below we investigate joint segmentation
and classification of DAs following the lines of [8]. The per-
formance of this approach is then evaluated and compared
to the results reported in [10, 11].

2. METHODOLOGY

For the sequence ofn input wordsW = (w1; : : : : wn),
we try to find a segmentationS = (s1; : : : sm) with cor-
responding DA labelsD = (d1; : : : dm). The variablessi
define the number of consecutive words in theith DA Wi =(wk ; : : : wl) wherek = 1 +Pi�1j=1 sj andl = k + si � 1.

Joint segmentation and classification of DAs can now
be formulated as(Ŝ; D̂) = arg maxS;D P (S;DjW ). In-
stead of maximizingP (S;DjW ), we invoke Bayes’ Rule to
maximizeP (W jS;D) P (SjD)P (D), which can be decom-
posed into the product given below, assuming independence
of theWi, given both thesi, and thedi, as well as indepen-
dence of thesi given thedi. Finally, we assume thatP (D)
can be decomposed into a product of bigram probabilitiesP (dijdi�1).mYi=1P (Wijsi; di)P (sijdi)P (dijdi�1) (1)

In our case, the probabilitiesP (Wijsi; di) are estimated by
DA type-specific trigram language models (LMs). TheP (sijdi)



n0 UH n1 BUT n2 WHY . . .

. . .

. . .

. . .
D

S

Q

F D
Q

Fig. 1. A* search graph for joint segmentation and classifi-
cation of DAs. The true segmentation and classification is
indicated by the solid edges. Dashed edges correspond to
alternative segmentation paths.

are computed using the observed DA type-specific length
distributions, and theP (dijdi�1) are provided by a bigram
DA grammar. Expression (1) can then be integrated into the
A* search algorithm in a straightforward way.

2.1. A* Search

During A* search, an optimal path through the input word
sequenceW is found. This is achieved by defining the
nodes of the search graph as the positions between the words.
The start noden0 corresponds to the position before the
first wordw1 and the final node comes directly after the last
wordwn. Edges of the search graph carry a label indicat-
ing the DA type and span one or more consecutive words.
Each edge therefore hypothesizes a potential DA within the
input sequence of words. See Fig. 1 for an illustration. The
costsCi of DA candidates are directly derived from Expres-
sion (1) as shown below.Ci = ��1 logP (Wijsi; di)� �2 logP (sijdi) (2)��3 logP (dijdi�1)
By taking the negative logarithm of the probabilities related
to the DA candidates we can replace the product of Expres-
sion (1) by the sum over the cost of subsequent edges in the
search graph. Parameters�1, �2, and�3 (with �i � 0, andPi �i = 1) are introduced to reduce negative side effects
of the imperfect modeling of the different probabilities and
will be optimized experimentally on heldout data.

In complex search graphs, a problem-specific heuristic
function helps the A* algorithm to find the optimal solu-
tion efficiently. To achieve this, the heuristic function must
provide a lower bound of the costs to reach the final node

Reference S|Q.Q.Q.Q|S.S.S|B|S.S|
System S|Q|S|Q.Q|D.D.D|S.S|S|
NIST-SU C E E C C E E C
DSER C| E | C |E| E |

Metric Errors Reference Rate
NIST-SU 3 FA, 1 miss 5 boundaries 80%
DSER 3 match errors 5 DAs 60%

Fig. 2. The NIST-SU, and the new DSER metrics for the
assessment of segmentation error rates. Both the refer-
ence and the system line represent a sequence of words
tagged with corresponding DA types, with S=Statement,
Q=Question, B=Backchannel, and D=Disruption.

from the current node. Since in our case the search graph
just consists in a linear sequence of nodes (i.e the size of
the search graph only grows linearly with the number of
words), we can use a trivial heuristic function that always
returns zero. If the input would consist of a word lattice
instead of the single best output of a speech-to-text (STT,
i.e. automatic speech recognition) system, a more sophisti-
cated approach might be needed to keep search times within
reasonable bounds.

2.2. Performance Metrics

To assess the performance of segmentation or classification
of DAs, a number of metrics have been proposed. For the
case of joint segmentation and classification most available
metrics do not directly fit. For instance, metrics evaluating
segmentation performance do not consider the correctness
of the classification task while metrics for the classification
of DAs assume perfect segmentation. Since tuning of sys-
tem parameters is inherent to most systems, it is important
to tune to metrics that are appropriate to the task at hand.
We first describe two metrics for the measurement of the
segmentation performance and then define metrics for the
joint segmentation and classification of DAs. The NIST-SU
metric was used to report the segmentation performance in
previous work [10] and has been provided by NIST in the
EARS MDE evaluations [12]. As this measure takes into ac-
count only the local correspondence of reference boundaries
and boundaries computed by the system, a direct interpreta-
tion of the resulting error rates is not always easy. To pro-
vide a more intuitive metric that is directly related to DAs,
we introduced the DA Segmentation Error Rate (DSER)
in [11]. The DSER measures the percentage of wrongly
segmented DA segments, where a DA is considered to be
mis-segmented if and only if its left or right boundary (or
both) does not exactly correspond to the reference segmen-
tation. This implies that for the DSER metric missed cases
are penalized more than false alarms (FA) compared to the



Reference S|Q.Q.Q.Q|S.S.S|B|S.S|
System S|Q|S|Q.Q|D.D.D|S.S|S|
Strict C E E E E E E E E E E
DER C| E | E |E| E |

Metric Errors Reference Rate
Strict 10 match errors 11 words 91%
DER 4 match errors 5 DAs 80%

Fig. 3. Comparison of the Strict and the new DER metric to
assess joint performance of segmentation and classification
of DAs.

NIST-SU metric. Also, for the DSER metric the maximum
error rate is 100% (e.g. not putting boundaries anywhere)
while for the NIST-SU metric the error rate can easily ex-
ceed 100% (e.g. 500% when we assume that we put a DA
boundary between all words and a DA contains 6 words on
average). See Fig. 2 for an illustration.

For the assessment of the joint performance of the seg-
mentation and classification of DAs, a word-based and a
DA-based metric are used in the experiments described in
Sec. 31. The word-based strict metric has been introduced
in [10] while the DA-based DER metric was proposed in [11]
as an analog to the DSER segmentation metric. For the strict
metric, a word is considered to be correctly classified if and
only if it has been assigned the correct DA type and it lies in
exactly the same DA segment as the corresponding word of
the reference. The DA Error Rate (DER) not only requires a
DA candidate to have exactly matching boundaries but also
to be tagged with the correct DA type. The DER thus mea-
sures the percentage of the misrecognized DAs and can be
seen as a length-normalized version of the strict metric. See
Fig. 3 for an illustration.

3. EXPERIMENTS AND DISCUSSION

For all experiments reported here, the experimental setup
used is as described in [10]. Of the 75 available meetings
of the ICSI MRDA corpus, two meetings of a different na-
ture are excluded (Btr001, and Btr002). From the remaining
meetings, we use 51 for training, 11 for development, and
11 for evaluation. For the segmentation and classification of
the DA types, the available speech is first sorted according
to the speaker, and then by time. The available DA types
are mapped to the following five distinct types: backchan-
nels (B), disruptions (D), floor grabbers (F), questions (Q),
and statements (S). Each system is then optimized and eval-
uated under both reference and STT conditions. Under the

1Two additional metrics found in the literature, the “recognition accu-
racy” as defined in [8], and the “lenient” metric [10] are not considered
here, since they do not take into account segmentation errors.

Cond. System NIST-SU DSER Strict DER
[10] 34.5 40.8 64.4 54.4
[10] np1 46.0 53.0 72.4 64.1

Ref [11] 46.3 55.3 74.3 66.5
A* 51.0 48.9 73.1 62.3
[10] 45.5 49.4 75.4 64.3
[10] np1 59.5 62.0 82.9 73.2

STT [11] 59.6 62.4 83.8 73.9
A* 71.1 55.8 83.9 71.41: reduced system, no prosody

Table 1. Comparison of the NIST-SU and the DSER seg-
mentation error rates, and the Strict and DER joint segmen-
tation and classification error rates for both reference and
STT conditions.

reference condition it is assumed that we have access to the
true sequence of the spoken words, while under the STT
condition the recognizer’s top-choice sequence of words is
provided.

The sequential approach to segmentation and classifica-
tion of DAs described in [10] differs in a number of aspects
from the systems investigated in this paper. While this sys-
tem has the potential drawback of working in a sequential
fashion, it is taking advantage of prosody in the segmenta-
tion step. To better compare the performance of the pro-
posed approaches, a reduced version of [10] that does not
make any use of prosody is included in the experiments.
The reduced system uses a hidden-event LM (HE-LM) for
segmentation, and classification of DAs is based on the max-
imum entropy framework. See [10] for details. Our first
attempts at joint segmentation and classification of DAs in-
cluded an extended version of a HE-LM which not only
predicted the presence of a DA boundary (as in [10]) but
the type of the DA boundary at the same time, as described
in [11].

For the A* based approach presented in this paper, a
grid search was applied to find optimal values for param-
eters�1, �2, and�3 on the development data. Parameter
values that minimize the DER metric under reference con-
ditions were found at�1 = 0:7, �2 = 0, and�3 = 0:3. Un-
der STT conditions optimal values were�1 = 0:8, �2 = 0,
and�3 = 0:2. The setting of�2 = 0 indicates that the
use of the DA-specific length distributionsP (sijdi) does
not help to improve the joint segmentation and classifica-
tion performance as measured by the DER (and the strict)
metric. A possible reason for this is an implicit modeling of
the length by the DA-specific N-gram LMs. It is interesting
to note that to optimize the segmentation, very different set-
tings would be selected, e.g.,�1 = 1 for the minimization of
the DSER metric. To optimize the A* system for the NIST-
SU metric, parameters�1 = 0:5, �2 = 0:2, and�3 = 0:3



DA Count [10] [10] np1 A*
B 1946 25.2 29.2 15.7
D 2220 72.9 84.2 80.9
F 1918 54.6 68.4 57.3
Q 1159 75.0 80.9 69.0
S 8889 53.4 63.6 68.11: reduced system, no prosody

Table 2. DA-specific error rates using the DER metric for
the different systems under reference conditions. Column
“Count” contains the number of corresponding DAs in the
test set.

worked best under reference conditions. As a consequence,
the test set NIST-SU error rate was reduced from 51.0% (as
reported in Table 1) to 49.1%. At the same time, the DER
was increased from 62.3% to 68%.

Test set results are provided in Table 1. It can generally
be observed that the A* approaches outperform the sequen-
tial approach of [10] on the DSER and the DER metrics
when prosody is excluded. When compared to our previous
results for joint segmentation and classification based on the
HE-LM [11], we find a substantial improvement of the A*
approach for all conditions and metrics except for NIST-
SU, and under STT conditions the strict metric. The low
performance achieved using the NIST-SU metric is mainly
a result of the tendency of the DA-specific LMs to over-
segment the input text2. By cutting longer DAs into a se-
quence of several shorter ones, many false alarms are gen-
erated which harms the NIST-SU performance significantly.
On the other hand, this leads to fewer errors for single-word
DA candidates like “YEAH” or “RIGHT” which boosts the
performance for the DSER and the DER metrics. The pre-
sented results also indicate that different systems perform
better for certain error metrics than for others e.g. the sys-
tem described in [10] performs better for the NIST-SU and
the strict error metrics while the evaluation of the A* ap-
proach described in this paper works best for the DSER and
the DER metrics.

A DA-specific error analysis for the different systems
under reference conditions is provided in Table 2. The A*
approach outperforms the sequential approach of [10] sig-
nificantly for both backchannels and questions. A manual
inspection of the differences of the results produced by the
different systems suggests that the DA-specific LMs recog-
nize questions and backchannels more often than the maxi-
mum entropy based classifier used in [10], which frequently
tags questions and backchannels as statements.

2The use of a word insertion penalty helped to improve the performance
for the NIST-SU metric. As in the case of the DA-specific length modeling,
the improvements came at the cost of higher error rates for the strict and
the DER metrics.

4. CONCLUSION AND OUTLOOK

We investigated the use of the A* graph search algorithm for
joint segmentation and classification of DAs in multiparty
meetings. For this, the use of word-based DA-specific LMs
is motivated in the context of a probabilistic framework, and
experimental results confirm the validity of the chosen ap-
proach. Furthermore, two new performance metrics, the
DSER for segmentation (measuring the percentage of the
correctly segmented DAs), and the DER for joint segmen-
tation and classification of DAs (quantifying the percentage
of correctly segmented and classified DAs), are described,
and the influence of different metrics for performance eval-
uation is demonstrated.

Results based on the A* approach outperform our pre-
vious work[11] for joint segmentation and classification un-
der all conditions and for all metrics but the NIST-SU met-
ric and, under STT conditions, the strict metric. The origi-
nal system [10] is outperformed for the proposed DER and
DSER metrics when prosodic features are excluded. When
compared to the original system [10] including prosody,
the proposed approach still does better on questions and
backchannels.

Next steps will include the integration of prosody and
the processing of word lattices.
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